

LG ORIFICE PLATE

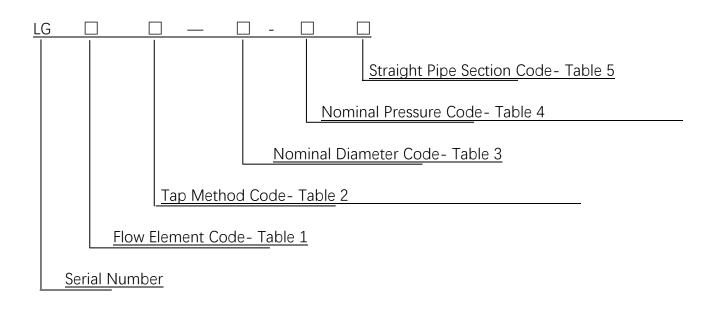
Summary

The LG type flow measurement flow element is the oldest and most widely used flow measurement instrument. It has the advantages of simple structure, easy installation, stable performance, and high accuracy. It can be used for liquid, vapor and gas flow measurement in modern industry. The LG type flow measurement flow element produced by our company adopting advanced calculation methods and precise processing methods has a wide range of varieties (in line with GB/T2624-2006, ISO5167-1-2003, BS1042-1989, American Mechanical Engineering Association standards, etc.), With complete specifications, it is widely used in petroleum, chemical, electric power, light

industry, water supply, gas transmission and other fields.

Operating Principle

In the pipeline filled with single-phase continuous fluid, install a flow element (such as an orifice). When the fluid passes through the orifice of the flow element, the vapor forms a local contraction, the flow velocity increases, the kinetic energy increases, and the static pressure decreases. There is a static pressure difference between the front and back of the flow element, that is, $\Delta P = P1-P2$. If the area of the orifice is F, the mass flow of the fluid is qm, the volume flow is qv, and the density is ρ , according to the principle of flow continuity and Bernoulli equation can derive the relationship between pressure difference and fluid flow:


$$q_m = \alpha F \sqrt{\Delta p \rho}$$
 or $q_V = \alpha F \sqrt{\Delta p / \rho}$

In the formula, α is the flow coefficient. It can be seen from the above relationship that if the orifice area and fluid density are constant, the flow rate is proportional to the square root of the pressure difference, that is, as long as the pressure difference is measured, the flow rate can be calculated. The flow element measures the fluid flow rate based on this principle.

Model Selection Table

1. Model

Table 1 Flow Element Code and Meaning

Code	Meaning		Code	Meaning
Υ	Standard Orifice		I	Eccentric Orifice
Q	1/4 Round Orifice		S	Segmental Orifice
Х	Small Diameter Orifice			
Т	Conical Inlet Orifice			

Table 2 Tap Method and Meaning

Code	F	Н	Z	D	Т
Meaning	Flange Tap	Corner Ring Tap	Drilling Tap	Diameter Tap	Special Tap

Table 3 Nominal Diameter Code and Meaning

Co	Code		2/11	3/12	4/13	5/14	6/15	7/16	8/17	9/18	10/19
DN	mm	10	15	20	25	32	40	50	65	80	100
DIN	in		1/2	3/4	1	1-1/4	1-1/2	2	2-1/2	3	4
Code		20/51	21/52	22/53	23/54	24/55	25/56	26/57	27/58	28/59	30/61
DN	mm	125	150	200	250	300	350	400	450	500	600
DIN	in	5	6	8	10	12	14	16	18	20	24
Code		32/63	34/65	36/67	38/69	40/71	42/73				
DN	mm	700	800	900	1000	1100	1200				
DIN	in	28	32	36	40	44	48				

Table 4 Nominal Pressure Code and Meaning

Code		3	4	5	6	7	8	9	10	11	12
PN	MPa	1.6	2.0	2.5	4.0	5.0	6.3	10.0	11.0	15.0	16.0
PIN	Class		150			300			600	900	
Co	de	13	14	15/16							
PN	MPa	25.0	26.0	42.0							
	Class		1500	2500							

Table 5 Straight Pipe Section Code and Meaning

Code		А	В	С	D	E	F
Meaning	Flow Element	Flow Element, Mounting Flange	Flow Element, Mounting Flange, Upstream and downstream straight pipe section	Flow Element, Mounting Flange, Upstream and downstream straight pipe section, Upstream and downstream connection flange	Flow Element, Mounting Flange, Upstream and downstream straight pipe section, Upstream connection flange	Flow Element, Mounting Flange, Upstream and downstream straight pipe section, Downstream connection flange	Welding Structure

2. Executive Standard

2.1 Flow Element Executive Standard

Code	Meaning	Standard Code
Υ	Standard Orifice	GB/T2624—2006 (ISO5167—1—2003)
Q	1/4 Round Orifice	BS1042-1989
Т	Conical Inlet Orifice	BS1042-1989
1	Eccentric Orifice	ASME
S	Segmental Orifice	ASME

For example, DN50 CL300 flange tap standard orifice model is LGYF-7-7A.

2.2 Flange and Gasket Executive Standard

Flange and gasket standards can be selected from $HG/T20592 \sim 20614-09$ (European system) or $HG/T20615 \sim 20635-09$ (American system) or other standards.

Order Requirements

1. When ordering flow element, please fill in the flow element specification table (Refer to the table below)

				Project No.						
					Element Ord	der Parameters Table	Document N	0.		
							Page No.			
		Data			Calculation					
	Mediu	m Name			Flow Element Type					
	Proces	s Temperature	°C		Tap Method					
	Opera:	tion Pressure	MPa		Instrumen	t Scale				
Ор					Instrument Differential Pressure kPa					
era		Liquid kg/h	Max		Limitation	of Min Flow				
tin		Vapor kg/h	Normal		Reynolds)				
g		Gas Nm3/h	Min		Area of Ex	icient Fa				
Co	Flow									
ndi					Flow Coef	ficient α				
tio					Uncertaint	ty %				
ns				Permanen	t Pressure Loss Pa					
	Opera	ting Density k	:g/m³		Diameter Ratio βt					
	<u></u>				Flow Element Hole Diameter or Round Height					
	Dynamic Viscosity mPa·s				mm					
	Kinematic Viscosity mm ² /s				1/4 Arc Radius Or Eccentricity mm					
	Relative Humidity (φ) %									
	Compi	ression Factor (Z)			Flow Element Standard					
	Isentro	pic Index (cp/cv)								
	Allowa	ble Pressure Loss	Pa		Specification					
	Nomin	nal Diameter(DN)			Model					
	Pipelin	e No.			Nominal Diameter(DN)					
Pipe	Outer	Diameter/Inner Dia	ameter		Nominal F	Pressure(PN) M	Pa			
)e	Materi	al			Flange Sta	ndard				
					Flange Inn	ner Diameter mm				
					Structure	Length mm				
					Tap Dime	nsion mm				
					Tap Position	on				
						Flow Element				
					Flange					
				Material						
					Nut					
					Gasket					
				•	•					
Notes										
S										

- 2. Our company can provide users with the following services:
- 2.1 Provide a complete set of the above-mentioned various specifications of flow element.
- 2.2 Provide flow element calculation for users, including:
- 1) Knowing the aperture diameter d20 of the flow element and the meter scale flow rate, under the new working conditions, find the new upper limit of the differential pressure Hmax of instrument;
- 2) Knowing the aperture diameter d20 of the flow element, the upper limit Hmax of the instrument differential pressure and the scale flow rate of the original design instrument, under the new working conditions, find the new scale flow rate of instrument.
- 2.3 According to user requirements or drawings to manufacture the flow element.