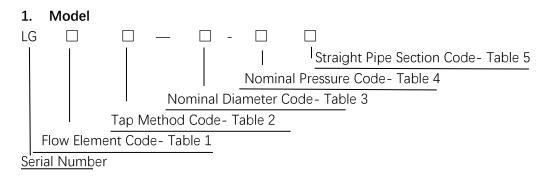


LG NOZZLE FLOW METERS

Summary

The LG type flow measurement flow element is the oldest and most widely used flow measurement instrument. It has the advantages of simple structure, easy installation, stable performance, and high accuracy. It can be used for liquid, vapor and gas flow measurement in modern industry. The LG type flow measurement flow element produced by our company adopting advanced calculation methods and precise processing methods has a wide range of varieties (in line with GB/T2624-2006, ISO5167-1-2003, BS1042-1989, American Mechanical Engineering Association standards, etc.), With complete specifications, it is widely used in petroleum, chemical, electric power, light industry, water supply, gas transmission and other fields.


Operating Principle

In the pipeline filled with single-phase continuous fluid, install a flow element (such as a nozzle). When the fluid passes through the orifice of the flow element, the vapor forms a local contraction, the flow velocity increases, the kinetic energy increases, and the static pressure decreases. There is a static pressure difference between the front and back of the flow element, that is, $\Delta P = P1-P2$. If the area of the orifice is F, the mass flow of the fluid is qm, the volume flow is qv, and the density is ρ , according to the principle of flow continuity and Bernoulli equation can derive the relationship between pressure difference and fluid flow:

$$q_m = \alpha F \sqrt{\Delta p \rho} \text{ or } q_V = \alpha F \sqrt{\Delta p / \rho}$$

In the formula, α is the flow coefficient. It can be seen from the above relationship that if the orifice area and fluid density are constant, the flow rate is proportional to the square root of the pressure difference, that is, as long as the pressure difference is measured, the flow rate can be calculated. The flow element measures the fluid flow rate based on this principle.

Model Selection Table

Table 1 Flow Element Code and Meaning

Code	Code Meaning		Meaning
М	ISA1932 Nozzle	С	Long Diameter Nozzle

Table 2 Tap Method and Meaning

Code	Н	D		
Meaning	Corner Ring Tap	Diameter Tap		

Table 3 Nominal Diameter Code and Meaning

Table 5 Norminal Planteter Gode and Meaning											
Code		1	2/11	3/12	4/13	5/14	6/15	7/16	8/17	9/18	10/19
DN	mm	10	15	20	25	32	40	50	65	80	100
DIN	in		1/2	3/4	1	1-1/4	1-1/2	2	2-1/2	3	4
Code 20/51 21/52 22/53 23/54 24/55 25/56 26/57 27/58 28						28/59	30/61				
DN	mm	125	150	200	250	300	350	400	450	500	600
DIN	in	5	6	8	10	12	14	16	18	20	24
Co	de	32/63	34/65	36/67	38/69	40/71	42/73				
DN	mm	700	800	900	1000	1100	1200				
אוט	in	28	32	36	40	44	48				

Table 4 Nominal Pressure Code and Meaning

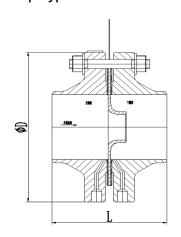
Code		3	4	5	6	7	8	9	10	11	12
PN	MPa	1.6	2.0	2.5	4.0	5.0	6.3	10.0	11.0	15.0	16.0
PIN	Class		150			300			600	900	
Code 13 14 15/16											
PN	MPa	25.0	26.0	42.0							
PIN	Class		1500	2500							

Table 5 Straight Pipe Section Code and Meaning

Code		Α	В	С	D	E	F
Meaning	Flow Element	Flow Element, Mounting Flange	Flow Element, Mounting Flange, Upstream and downstream straight pipe section	Flow Element, Mounting Flange, Upstream and downstream straight pipe section, Upstream and downstream connection flange	Flow Element, Mounting Flange, Upstream and downstream straight pipe section, Upstream connection flange	Flow Element, Mounting Flange, Upstream and downstream straight pipe section, Downstream connection flange	Welding Structure

2. Executive Standard

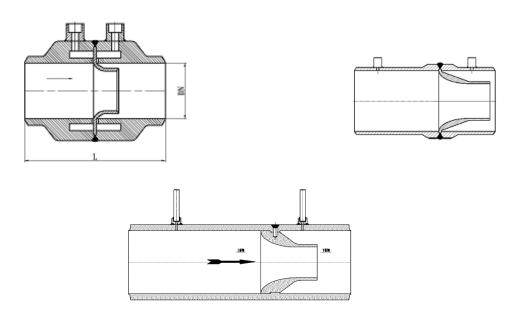
2.1 Flow Element Executive Standard


Code	Meaning	Standard Code
М	ISA1932 Nozzle	GB/T2624—2006 (ISO5167—1—2003)
С	Long Diameter Nozzle	GB/T2624—2006 (ISO5167—1—2003)


2.2 Flange and Gasket Executive Standard

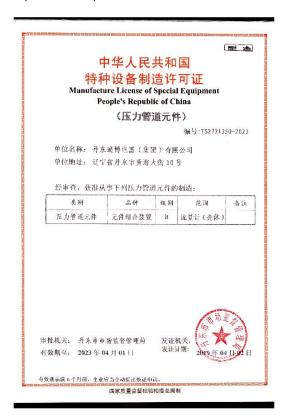
Flange and gasket standards can be selected from $HG/T20592 \sim 20614-09$ (European system) or $HG/T20615 \sim 20635-09$ (American system) or other standards.

3. Basic Structure


3.1 Flange to Clamp Type

3.2 Welding Flow Element

This is a kind of flow element. It has the characteristics of simple structure, cost saving, short production cycle and no leakage. It is especially suitable for industrial high temperature and high pressure pipeline medium flow and vapor flow measurement.



4 Document No.515

The notice of the General Office of the General Administration of Market Supervision on the Special Investigation and Repair of Potential Hazards within the Range of Power Station Boilers (Document No.515) stipulates that the pipelines within the range of power station boilers shall be in accordance with the "Boiler Safety Technical Supervision Regulations", "Boiler Supervision and Inspection Rules", and "Regular Boiler Inspection" Design, manufacture, installation, use management, inspection and testing according to regulations and related standards.

Standard nozzles and long-diameter nozzles are all standard flow elements, and there is no need for real flow calibration during processing. The flow element has the characteristics of low pressure loss and wear resistance, which is suitable for the measurement of high-pressure vapor flow of power station boilers. According to the requirements of the AQSIQ 2018 No.515 document for flow meters for power station boilers, our company is the first enterprise in Northeast to obtain the qualification for the production of pressure piping components for flow meter housings. All links are supervised and inspected by the local boiler inspection institute to ensure product quality.

The long-diameter nozzle adopts an embedded structure, and the flow meter (housing) is made of a whole section of seamless steel pipe, without large welds, and there is no welding of dissimilar steels, and the strength of the pipeline is calculated and checked. It is more reliable in the measurement of high pressure vapor flow in power station boilers.

Order Requirements

1. When ordering flow element, please fill in the flow element specification table (Refer to the table below)

						Project No.				
				Flow Element Ord	der Parameters Table	Document No.				
						Page No.				
		Data			Calculation					
	Mediu	m Name		Flow Elem	Flow Element Type					
	Proces	ss Temperature	°C	Tap Meth	Tap Method					
	Opera	tion Pressure	MPa	Instrumen	Instrument Scale					
Ор				Instrumen	Instrument Differential Pressure kPa					
era		Liquid kg/h	Max	Limitation	Limitation of Min Flow					
tin		Vapor kg/h	Normal	Reynolds	Reynolds number(normal flow) Re					
g Co		Gas Nm3/h	Min	Area of Ex	Area of Expansion Correction Coefficient Fa					
ndi	Flow			Expansion	Expansion Coefficient ε					
tio				Flow Coef	Flow Coefficient α					
ns				Uncertain ⁻	ty %					
113				Permaner	t Pressure Loss Pa					
	Opera	ting Density I	kg/m³	Diameter	Ratio βt					
	Dynan	nic Viscosity r	nPa∙s	Flow Elem	Flow Element Hole Diameter or Round Height					
	Dyrian	•		mm	mm					
			nm²/s	1/4 Arc F	1/4 Arc Radius Or Eccentricity mm					
-	Relative Humidity (φ) %									
	Comp	ression Factor (Z)	Flow Elem	Flow Element Standard					
		opic Index (cp/cv								
		able Pressure Loss	Pa		Specification					
		nal Diameter(DN)		Model						
	Pipelir				Nominal Diameter(DN)					
Pipe		Diameter/Inner Di	ameter		Nominal Pressure(PN) MPa					
Ф	Materi	ial		<u> </u>	Flange Standard					
					Flange Inner Diameter mm					
				_	Structure Length mm					
				Tap Dime						
				Tap Positi	T					
					Flow Element					
					Flange					
				Material	Bolt					
					Nut					
	1				Gasket					
Notes										

2. Our company can provide users with the following services

- 2.1 Provide a complete set of the above-mentioned various specifications of flow element.
- 2.2 Provide flow element calculation for users, including:
- 1) Knowing the aperture diameter d20 of the flow element and the meter scale flow rate, under the new working conditions, find the new upper limit of the differential pressure Hmax of instrument;
- 2) Knowing the aperture diameter d20 of the flow element, the upper limit Hmax of the instrument differential pressure and the scale flow rate of the original design instrument, under the new working conditions, find the new scale flow rate of instrument.
- 2.3 According to user requirements or drawings to manufacture the flow element.